RICHARD
» FEIMAN
JONH ARCHIBALD
&N'm q WHEELER

BOHR

\ EUMANN ALBERT
EINSTEIN
i ERWIN
A SCHRODINGER
MAX
| BORN
e WERNER
| HANS ALBRECHT % @HesenBerc SCIENTIFIC
=EILE COLLABORATION
NETWORK

» DAVID
IREI@IUIEES'S

ANALYZING MASSIVE GRAPHS - PART I
DR. MICHAEL FIRE

Graphs/Networks are Everywhere

Some examples:

* Online Social Networks

» Computer Networks

* Financial Transactions Networks
* Protein Networks

* Neuron Networks

* Animal Social Networks

Networks/Graphs are Well-Studied

Due to their cross-disciplinary usefulness today, there are:
* Numerous graph algorithms

* Many tools/frameworks to analyze graphs

* Many tools to visualize graphs

igraph q
%Gephi

Networkx “

Graphs - The Basics

A graph consists of a set of vertices (nodes), and a
set of links (edges). The links connect vertices.

There are direct graphs, like Twitter, and undirected
graphs, like Facebook.

Practical Network Analysis

There are countless interesting things that we can learn from graphs:
» @Graph Algorithms and Their Complexity

Network Evolution Models

* Dynamic Networks

» Spreading Phenomena

Temporal Networks

Motifs

In today’s lecture, we are going to learn how to use networks as
data structures to analyze and infer insights from data

Brief History of Network Models

* In 1959, Erdbds and Rényi developed random graph generation
model

* In 1965, Price observed a network in which the degree distribution
followed a power law. Later, in 1976, Price provided an explanation
of the creation of these types of networks: “Success seems to
breed success”

* In 1998, Watts and Strogatz introduced model for generating small-
world networks

- In 1999, Baraba'si and Albert observed that degree distributions
that follow power laws exist in a variety of networks, including the
World Wide Web. Baraba’si and Albert coined the term “scale-free
networks” for describing such networks.

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
http://garfield.library.upenn.edu/price/pricetheory1976.pdf
http://garfield.library.upenn.edu/price/pricetheory1976.pdf
https://www.nature.com/articles/30918
https://www.nature.com/articles/30918
https://en.wikipedia.org/wiki/Scale-free_network
https://en.wikipedia.org/wiki/Scale-free_network

Network Analysis 100ls

* Networkx - a Python Library for graph analysis

» 1Graph - a library collection for creating and manipulating graphs
and analyzing networks. It is written in C and also exists as
Python and R packages.

 NodeXL - NodeXL Basic is an open-source template that makes
it easy to explore network graphs

* NetworkKit - NetworKit is an open-source tool suite for high-
performance network analysis. Its aim is to provide tools for the
analysis of large networks.

- SGraph - A scalable graph data structure. The SGraph provides
flexible vertex and edge query functions, and seamless
transformation to and from an SFrame object

https://networkx.github.io
https://igraph.org/redirect.html
https://archive.codeplex.com/?p=nodexl
https://networkit.github.io
https://apple.github.io/turicreate/docs/api/generated/turicreate.SGraph.html

Networkx

Pros:

- Easy and fun to use

» Mature library

» Many implemented graph algorithms

* Vertices can be anything and edges can store
attributes

- Easy to visualize graphs and to save them in many
formats

Cons:

* Doesn’t work well with large graphs

» Slow

Graph

Pros:
» Mature library

* Many implemented graph algorithms
* Pretty fast

Cons:
» Little tricky to use
» Doesn’t work well with very large graphs

SGraph

Pros:

- Can work with very large graphs (billions of links)
» Part of the TuriCreate Eco-system (works great with
SFrame)

Cons:
* Relatively little functionality

Network Visualization [ools

Cytoscape is an open source bioinformatics software
platform for visualizing molecular interaction networks.
Cytoscape can be used to visualize and analyze network
graphs of any kind.

https://cytoscape.org

Network Visualization [ools

Gephi is an open-source network

analysis and visualization software package written in Java

| -y Overview | | || DataLaboratory | I = Preview

Workspace 0

Appearance £

Nodes Edges @ @ A T

Unique Attribute

Modularity Class u

oo (28.16 %)

H 2 (23.2%
4 (18.51 %)
79 (9.21 %)
28 (3.34 %)
72 (1.09 %)
82 (1.09 %)

s Palette...

= > Apply
Layout £ | &
Yifan Hu | T

(3] P Run

v Yifan Hu's properties

Optimal Distance 200.0

Relative Strength 0.2

Initial Step size 20.0

Step ratio 0.95

Adaptive Cooling
Convergence Threshold 1.0E-4
v Barnes-Hut's properties

Quadtree Max Level 10
Theta 1.2
Yifan Hu

V' presets... | Reset B Background | Reset zoom | -

+

Gephi 0.9.1 - Graph.gephi

Dbl Context €

Nodes: 3203
Edges: 26535
Undirected Graph

Filters | Statistics MultiMode N...

Settings

= Network Overview
Average Degree

Avg. Weighted Degree 2
Network Diameter
Graph Density
Modularity

PageRank

Connected Components

= Node Overview
Avg. Clustering Coeffici

Eigenvector Centrality

= Edge Overview
Avg. Path Length

= Dynamic
Nodes

Edges
Degree

Clustering Coefficient

16.56
4.134

5
0.005
0.433

ent

2.565

Run

Run

Run

Run

Run

https://gephi.org

Network Visualization [ools

D3.]s is a JavaScript library for producing dynamic,
Interactive data visualizations in web browsers.

We can use D3.js to dynamically visualize networks

o°0°EQO
@?@ Tt
d)
%i

http://mbostock.github.io/d3/talk/20111116/force-collapsible.html
http://mbostock.github.io/d3/talk/20111116/force-collapsible.html

AL Ll o NetworkX Docs » Reference » Algorithms » Shortest Paths

Shortest Paths

Instel Compute the shortest paths and path lengths between nodes in the graph.
Tutorial
© Reference These algorithms work with undirected and directed graphs.
Introduction
shortest_path (G[, source, target, weight, ...]) Compute shortest paths in the graph.

Graph types
Algorithms all_shortest_paths (G, source, target][, ...]) Compute all shortest paths in the graph.
Functions shortest_path_length (G[, source, target, ...]) Compute shortest path lengths in the graph.
Graph generators average_shortest_path_length (G[, weight, method]) Return the average shortest path length.
Linear algebra has_path (G, source, target) Return True if G has a path from source to target.

Converting to and from other data
formats

Advanced Interface

Relabeling nodes

Reading and writing graphs Shortest path algorithms for unweighted graphs.
Drawing
Randomness single_source_shortest_path (G, source[, cutoff]) Compute shortest path between source and all other |
Exceptions single_source_shortest_path_length (G, source) Compute the shortest path lengths from source to all
Utilities single_target_shortest_path (G, target[, cutoff]) Compute shortest path to target from all nodes that re
Glossary
single_target_shortest_path_length (G, target) Compute the shortest path lengths to target from all r
Developer Guide
bidirectional_shortest_path (G, source, target) Return a list of nodes in a shortest path between sour
Release Log
P all_pairs_shortest_path (G, cutoff]) Compute shortest paths between all nodes.
Credits all_pairs_shortest_path_length (G[, cutoff]) Computes the shortest path lengths between all node
Citing predecessor (G, sourcel, target, cutoff, ...]) Returns dict of predecessors for the path from source

Bibliography
Shortest path algorithms for weighed graphs.

Examples

Some Terminology

There are many interesting vertex/links/networks properties that are
widely used in the context of analyzing networks. Here is a short list
of terms we will need for the following examples:

Degree - the number of edges incident to a vertex

Clustering Coefficient - a measure of the degree to which

nodes in a graph tend to cluster together.
Betweenness centrality - a centrality measure which quantifies

the number of times a vertex/edge acts as a bridge along the
shortest path between two other nodes/edges.

Modularity - measures the strength of division of a graph into
modules (also called groups, clusters or communities)
Strongly Connected Component - a maximal group of vertices
that are mutually reachable

Weakly Connected Component - a maximal group of vertices
that are mutually reachable by violating the edge directions.
Common Friends - Given two vertices u and v, the common
friends of u and v is the size of the common set of friends that
both u and v possess.

https://en.wikipedia.org/wiki/Degree_(graph_theory)
https://en.wikipedia.org/wiki/Clustering_coefficient
https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Modularity_(networks)
https://en.wikipedia.org/wiki/Strongly_connected_component

Some Useful Algorithms

¢ Community Detection
® Shortest Path

® (Closeness Centrality
* PageRank

¢ k-Core Decomposition

https://en.wikipedia.org/wiki/Community_structure
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Closeness_centrality
https://en.wikipedia.org/wiki/PageRank
https://arxiv.org/pdf/cs/0504107.pdf

Let’s move to running code using Jupyter Notebook

Mofiven

Orc Lié

Peregrin 4

Shagrat / Corsairo

nant 1

Example: Closeness
Centrality

Closeness centrality (or closeness) of a node is a
measure of centrality in a network, calculated as the
reciprocal of the sum of the length of the shortest
paths between the node and all other nodes In
the graph.

Thus, the more central a node Is, the closer it is to all
other nodes. o1

The Networkx Implementation

if distance is not None:
use Dijkstra's algorithm with specified attribute as edge weight
path_length = functools.partial(nx.single_source_dijkstra_path_length,
weight=distance)
else:
path_length = nx.single_source_shortest_path_length

if u is None:
nodes = G.nodes()
else:
nodes = [u]
closeness_centrality = {}
for n in nodes:
sp = path_length(G,n)
totsp = sum(sp.values())
if totsp > 0.0 and len(G) > 1:
closeness_centrality[n] = (len(sp)-1.8) / totsp
normalize to number of nodes-1 in connected part
if normalized:
s = (len(sp)-1.0) / (len(G) - 1)
closeness_centrality[n] *= s
else:
closeness_centrality[n] = 0.0
if u is not None:
return closeness_centrality[u]
else:
return closeness_centrality

The Networkx Implementation

single_source_shortest_path_length(G, source, cutoff=None) [source]

Compute the shortest path lengths from source to all reachable nodes.

seen={} # level (number of hops) when seen in BFS
level=0 # the current level
nextlevel={source:1} # dict of nodes to check at next level
while nextlevel:
thislevel=nextlevel # advance to next level
nextlevel={} # and start a new list (fringe)
for v in thislevel:
if v not in seen:
seen[v]=level # set the level of vertex v
nextlevel.update(GLv]) # add neighbors of v
if (cutoff is not None and cutoff <= level): break

level=level+]
return seen # return all path lengths as dictionary

Example: Grivan-Newman

Community Detection Algorithm

The idea behind the algorithm:

* lteratively remove edges

- focuses on edges that are most likely “between”
communities, i.e. edges with the highest
betweenness

- Stop were there are no-more edges

* As the graph breaks down into pieces, the tightly
knit community structure is exposed and the result
can be depicted as a dendrogram.

The Networkx Implementation

If the graph is already empty, simply return its connected
components.
if G.number_of_edges() ==
yield tuple(nx.connected_components(G))
return
If no function is provided for computing the most valuable edge,
use the edge betweenness centrality.
if most_valuable_edge is None:
def most_valuable_edge(G):
""YReturns the edge with the highest betweenness centrality
in the graph G .

We have guaranteed that the graph is non-empty, so this
dictionary will never be empty.
betweenness = nx.edge_betweenness_centrality(G)
return max(betweenness, key=betweenness.get)
The copy of G here must include the edge weight data.
g = G.copy().to_undirected()
Self-loops must be removed because their removal has no effect on
the connected components of the graph.
g.remove_edges_from(nx.selfloop_edges(g))
while g.number_of_edges() > 0:
yield _without_most_central_edges(g, most_valuable_edge)

The Networkx Implementation

def _without_most_central_edges(G, most_valuable_edge):
""Y“Returns the connected components of the graph that results from
repeatedly removing the most "valuable" edge in the graph.

"G" must be a non-empty graph. This function modifies the graph G’
in-place; that is, it removes edges on the graph 'G'.

‘most_valuable_edge’ is a function that takes the graph "G° as input
(or a subgraph with one or more edges of "G removed) and returns an
edge. That edge will be removed and this process will be repeated
until the number of connected components in the graph increases.

original_num_components = nx.number_connected_components(G)
num_new_components = original_num_components
while num_new_components <= original_num_components:
edge = most_valuable_edge(G)
G.remove_edge (*xedge)
new_components = tuple(nx.connected_components(G))
num_new_components = len(new_components)
return new_components

most_valuable_edge -> usually the default is the edge with the
highest betweenness centrality

Fdge Betweenness Centrality

Betweenness centrality of an edge eis the sum of the fraction of all-pairs shortest paths that pass

through e:

eple) = Z o(s,tle)

s’tev U(S? t)

where V' is the set of nodes, sigma(s, t)" is the number of shortest (s, t)-paths, and o (s, t|e) is the

number of those paths passing through edge e (2],

Using Girvan-Newman

g = nx.path_graph(.7)

(girvan_newman(g))

[({o, 1, 2, 3, 4}, {5, 6, 7, 8, 9}),
({e, 1}, {2, 3, 4}, {5, 6, 7, 8, 91),
{9, 1}, {2, 3, 4}, {5, &}, {7, 8, 9}),

({9, 1}, {2}, 13, 4}, {5, 6}, {7, 8, 91, |_iL |

({0, 1}, {2}, {3, 4}, {5, 6}, {7}, {8, 9}),

({e}r, {1}, {2}, {3, 4}, {5, 6}, {7}, {8, 9}), L

({e}, {1}, {2}, {3}, {4}, {5, 6}, {7}, {8, 9}),
({e}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8, 9}),
({ey, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9})]

Recommended Read:

Michael Fire: The Science of networks: Big Data in
action

Network Science Course by Carlos Castillo

Top 30 Social Network Analysis and Visualization Tools
by Devendra Desale

Lecture 24 — Community Detection in Graphs -
Motivation | Stanford University

k-Core Decomposition: A tool for the visualization of
Large Scale Networks by Alvarez-Hamelin, José
Ignacio, et al.

https://youtu.be/6z8FUud0GII
https://youtu.be/6z8FUud0GII
https://chatox.github.io/networks-science-course/
https://www.kdnuggets.com/2015/06/top-30-social-network-analysis-visualization-tools.html
https://www.youtube.com/watch?v=k0uxnVEuuz0
https://www.youtube.com/watch?v=k0uxnVEuuz0
https://arxiv.org/pdf/cs/0504107.pdf
https://arxiv.org/pdf/cs/0504107.pdf
http://www.apple.com

