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Graphs/Networks are Everywhere

Some examples:

• Online Social Networks 

• Computer Networks

• Financial Transactions Networks

• Protein Networks

• Neuron Networks

• Animal Social Networks



Networks/Graphs are Well-Studied

Due to their cross-disciplinary usefulness today, there are:

• Numerous graph algorithms 

• Many tools/frameworks to analyze graphs

• Many tools to visualize graphs

Networkx

igraph



Graphs - The Basics
A graph consists of a set of vertices (nodes), and a 
set of links (edges). The links connect vertices.


There are direct graphs, like Twitter, and undirected 
graphs, like Facebook.




Practical Network Analysis
There are countless interesting things that we can learn from graphs:

• Graph Algorithms and Their Complexity

• Network Evolution Models

• Dynamic Networks

• Spreading Phenomena

• Temporal Networks

• Motifs

In today’s lecture, we are going to learn how to use networks as  
data structures to analyze and infer insights from data



Brief History of Network Models
• In 1959, Erdős and Rényi developed random graph generation 

model

• In 1965, Price observed a network in which the degree distribution 

followed a power law. Later, in 1976, Price provided an explanation 
of the creation of these types of networks: “Success seems to 
breed success” 


• In 1998, Watts and Strogatz introduced model for generating small-
world networks


• In 1999, Baraba ́si and Albert observed that degree distributions 
that follow power laws exist in a variety of networks, including the 
World Wide Web. Baraba ́si and Albert coined the term “scale-free 
networks” for describing such networks.

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
http://garfield.library.upenn.edu/price/pricetheory1976.pdf
http://garfield.library.upenn.edu/price/pricetheory1976.pdf
https://www.nature.com/articles/30918
https://www.nature.com/articles/30918
https://en.wikipedia.org/wiki/Scale-free_network
https://en.wikipedia.org/wiki/Scale-free_network


Network Analysis Tools
• Networkx - a Python Library for graph analysis 

• iGraph - a library collection for creating and manipulating graphs 

and analyzing networks. It is written in C and also exists as 
Python and R packages.


• NodeXL  - NodeXL Basic is an open-source template that makes 
it easy to explore network graphs


• NetworKit - NetworKit is an open-source tool suite for high-
performance network analysis. Its aim is to provide  tools for the 
analysis of large networks.


• SGraph - A scalable graph data structure. The SGraph provides 
flexible vertex and edge query functions, and seamless 
transformation to and from an SFrame object

https://networkx.github.io
https://igraph.org/redirect.html
https://archive.codeplex.com/?p=nodexl
https://networkit.github.io
https://apple.github.io/turicreate/docs/api/generated/turicreate.SGraph.html


Networkx
Pros: 
• Easy and fun to use 

• Mature library 

• Many implemented graph algorithms

• Vertices can be anything and edges can store 

attributes

• Easy to visualize graphs and to save them in many 

formats

Cons: 
• Doesn’t work well with large graphs 

• Slow




iGraph
Pros: 
• Mature library 

• Many implemented graph algorithms

• Pretty fast 

Cons: 
• Little tricky to use

• Doesn’t work well with very large graphs 




SGraph
Pros: 
• Can work with very large graphs (billions of links)

• Part of the TuriCreate Eco-system (works great with 

SFrame)

Cons: 
• Relatively little functionality




Network Visualization Tools
Cytoscape is an open source bioinformatics software 
platform for visualizing molecular interaction networks. 
Cytoscape can be used to visualize and analyze network 
graphs of any kind.

Yeast Protein–protein/Protein–DNA interaction network visualized by Cytoscape.

https://cytoscape.org


Network Visualization Tools
Gephi is an open-source network 
analysis and visualization software package written in Java

https://gephi.org


Network Visualization Tools
D3.js is a JavaScript library for producing dynamic, 
interactive data visualizations in web browsers.


We can use D3.js to dynamically visualize networks

http://mbostock.github.io/d3/talk/20111116/force-collapsible.html
http://mbostock.github.io/d3/talk/20111116/force-collapsible.html




Some Terminology
There are many interesting vertex/links/networks properties that are 
widely used in the context of analyzing networks. Here is a short list 
of terms we will need for the following examples:

• Degree  - the number of edges incident to a vertex 
• Clustering Coefficient - a measure of the degree to which 

nodes in a graph tend to cluster together.

• Betweenness centrality - a centrality measure which quantifies 

the number of times a vertex/edge acts as a bridge along the 
shortest path between two other nodes/edges. 

• Modularity - measures the strength of division of a graph into 
modules (also called groups, clusters or communities)


• Strongly Connected Component - a maximal group of vertices 
that are mutually reachable


• Weakly Connected Component - a maximal group of vertices 
that are mutually reachable by violating the edge directions.


• Common Friends - Given two vertices u and v, the common 
friends of u and v is the size of the common set of friends that 
both u and v possess. 

https://en.wikipedia.org/wiki/Degree_(graph_theory)
https://en.wikipedia.org/wiki/Clustering_coefficient
https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Modularity_(networks)
https://en.wikipedia.org/wiki/Strongly_connected_component


Some Useful Algorithms
• Community Detection 
• Shortest Path 
• Closeness Centrality 
• PageRank 
• k-Core Decomposition

https://en.wikipedia.org/wiki/Community_structure
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Closeness_centrality
https://en.wikipedia.org/wiki/PageRank
https://arxiv.org/pdf/cs/0504107.pdf


Let’s move to running code using Jupyter Notebook





Example: Closeness 
Centrality

Closeness centrality (or closeness) of a node is a 
measure of centrality in a network, calculated as the 
reciprocal of the sum of the length of the shortest 
paths between the node and all other nodes in 
the graph. 


Thus, the more central a node is, the closer it is to all 
other nodes.



The Networkx Implementation 



The Networkx Implementation 



Example: Grivan-Newman 
Community Detection Algorithm
The idea behind the algorithm:

• Iteratively remove edges

• focuses on edges that are most likely “between" 

communities, i.e. edges with the highest 
betweenness 


• Stop were there are no-more edges

• As the graph breaks down into pieces, the tightly 

knit community structure is exposed and the result 
can be depicted as a dendrogram.




The Networkx Implementation 
    """ 
    # If the graph is already empty, simply return its connected 
    # components. 
    if G.number_of_edges() == 0: 
        yield tuple(nx.connected_components(G)) 
        return 
    # If no function is provided for computing the most valuable edge, 
    # use the edge betweenness centrality. 
    if most_valuable_edge is None: 
        def most_valuable_edge(G): 
            """Returns the edge with the highest betweenness centrality 
            in the graph `G`. 

            """ 
            # We have guaranteed that the graph is non-empty, so this 
            # dictionary will never be empty. 
            betweenness = nx.edge_betweenness_centrality(G) 
            return max(betweenness, key=betweenness.get) 
    # The copy of G here must include the edge weight data. 
    g = G.copy().to_undirected() 
    # Self-loops must be removed because their removal has no effect on 
    # the connected components of the graph. 
    g.remove_edges_from(nx.selfloop_edges(g)) 
    while g.number_of_edges() > 0: 
        yield _without_most_central_edges(g, most_valuable_edge)



The Networkx Implementation 
def _without_most_central_edges(G, most_valuable_edge): 
    """Returns the connected components of the graph that results from 
    repeatedly removing the most "valuable" edge in the graph. 

    `G` must be a non-empty graph. This function modifies the graph `G` 
    in-place; that is, it removes edges on the graph `G`. 

    `most_valuable_edge` is a function that takes the graph `G` as input 
    (or a subgraph with one or more edges of `G` removed) and returns an 
    edge. That edge will be removed and this process will be repeated 
    until the number of connected components in the graph increases. 

    """ 
    original_num_components = nx.number_connected_components(G) 
    num_new_components = original_num_components 
    while num_new_components <= original_num_components: 
        edge = most_valuable_edge(G) 
        G.remove_edge(*edge) 
        new_components = tuple(nx.connected_components(G)) 
        num_new_components = len(new_components) 
    return new_components

most_valuable_edge -> usually the default is the edge with the 
highest betweenness centrality



Edge Betweenness Centrality



Using Girvan-Newman



Recommended Read:
• Michael Fire: The Science of networks: Big Data in 

action

• Network Science Course by Carlos Castillo

• Top 30 Social Network Analysis and Visualization Tools 

by Devendra Desale

• Lecture 24 — Community Detection in Graphs - 

Motivation | Stanford University

• k-Core Decomposition: A tool for the visualization of 

Large Scale Networks by Alvarez-Hamelin, José 
Ignacio, et al. 

https://youtu.be/6z8FUud0GII
https://youtu.be/6z8FUud0GII
https://chatox.github.io/networks-science-course/
https://www.kdnuggets.com/2015/06/top-30-social-network-analysis-visualization-tools.html
https://www.youtube.com/watch?v=k0uxnVEuuz0
https://www.youtube.com/watch?v=k0uxnVEuuz0
https://arxiv.org/pdf/cs/0504107.pdf
https://arxiv.org/pdf/cs/0504107.pdf
http://www.apple.com

