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Computationally Efficient Link Prediction in a Variety
of Social Networks
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Online social networking sites have become increasingly popular over the last few years. As a result, new
interdisciplinary research directions have emerged in which social network analysis methods are applied to
networks containing hundreds of millions of users. Unfortunately, links between individuals may be missing
either due to an imperfect acquirement process or because they are not yet reflected in the online network
(i.e., friends in the real world did not form a virtual connection). The primary bottleneck in link prediction
techniques is extracting the structural features required for classifying links. In this article, we propose a set
of simple, easy-to-compute structural features that can be analyzed to identify missing links. We show that by
using simple structural features, a machine learning classifier can successfully identify missing links, even
when applied to a predicament of classifying links between individuals with at least one common friend. We
also present a method for calculating the amount of data needed in order to build more accurate classifiers.
The new Friends measure and Same community features we developed are shown to be good predictors for
missing links. An evaluation experiment was performed on ten large social networks datasets: Academia.edu,
DBLP, Facebook, Flickr, Flixster, Google+, Gowalla, TheMarker, Twitter, and YouTube. Our methods can
provide social network site operators with the capability of helping users to find known, offline contacts and
to discover new friends online. They may also be used for exposing hidden links in online social networks.
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1. INTRODUCTION

In recent years, online social networks have grown exponentially and offer individuals
with similar personal and business interests the possibility of meeting and networking.
Social networks create new opportunities to develop friendships, share ideas, and con-
duct business. Online social networking services, such as Facebook, Google+, Twitter,
and Flickr, just to name a few, have become part of the daily life of millions of people
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around the world. The enormous growth of these networks has resulted in several re-
search directions that examine the structural and behavioral properties of large-scale
social networks.

Typically, researchers collect social network data using Web crawler software. Such
crawlers, however, may sometimes collect only partial information. This is due to vari-
ous causes, such as an attempt to access broken Web links, efforts by the social network
operator to block various subscribers, communication failures, etc. Consequently, those
depending upon the Web crawler might find themselves with only partial information
about the set of links within a social network. In such cases, heuristic techniques for
uncovering hidden links missed by the Web crawler are useful for completing the net-
work structure. Detection of hidden links is also very practical for friend suggestion
mechanisms used by online social networks. In such cases, hidden links may consist
of existing social ties that have not yet been established in the particular social net-
work [Liben-Nowell and Kleinberg 2007; Hasan et al. 2006; Doppa et al. 2009; Sa and
Prudencio 2010; Song et al. 2009; Cukierski et al. 2011].

The problem of predicting the existence of hidden links or the creation of new ones
in social networks is commonly referred to as the Link Prediction problem. Link pre-
diction has many applications within and without the domain of social networks. For
example, in bioinformatics, link prediction can be used to find interactions between
proteins [Airoldi et al. 2006]; in e-commerce it can help build recommendation systems
[Huang et al. 2005]; and in the security domain link prediction can assist in identify-
ing hidden groups of terrorists or criminals [Hasan et al. 2006] or even compromise
social networks users’ privacy [Fire et al. 2012a]. Since the Link Prediction problem is
relevant to different scenarios, several algorithms have been proposed in recent years.
Some of the solutions are based on supervised machine learning and selecting relevant
features, Bayesian probabilistic models, relational Bayesian networks, or linear alge-
braic methods. Further details on these approaches can be found in a thorough survey
written by Zaki and Hasan [Hasan and Zaki 2011].

In this article, we investigate solutions to the Link Prediction problem based on ma-
chine learning classifiers trained on a set of easy-to-compute topological features. In
addition to a set of well-known features, such as Katz measure [Katz 1953], Common-
friends feature, and Jaccard’s coefficient [Tan et al. 2005], we discuss two new topo-
logical features, later described in detail in Section 4.1. The first feature, the Friends
measure introduced in Fire et al. [2011], is a variation of the Katz measure which
estimates how well the friends of two users know each other. The second feature, the
same-community feature introduced in this article, estimates whether two social net-
work users are members of the same community in the social network. Classifiers based
on these features are trained and evaluated using ten different social networks, five
of which are directed: Academia.edu1, Flickr2, Google+3, Twitter4, and YouTube5, and
five are undirected: DBLP6, Flixster7, Facebook8, Gowalla9, and TheMarker Cafe10.
Further information on these social networks is presented in Section 3. The quality

1http://www.academia.edu.
2http://www.flickr.com.
3https://plus.google.com.
4http://www.twitter.com.
5http://www.youtube.com.
6http://www.informatik.uni-trier.de/∼ley/db/.
7http://www.flixster.com.
8http://www.facebook.com.
9http://gowalla.com/.
10http://cafe.themarker.com/.
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of the features and of the classifiers based on these features was evaluated on two
kinds of datasets created from these networks. The easy dataset includes false links
that connect two randomly chosen vertices, while the hard dataset includes only links
where the distance between the two foreseen neighbors is two (they already have at
least one common friend). The evaluation results presented in Section 5 demonstrate
that the Friends measure is a very effective feature for link prediction. Furthermore, in
Section 4.2, we present a method for evaluating the training set size needed in order to
build decision tree link prediction classifiers with near-maximal Area Under the ROC
Curve (AUC).

The rest of the article is organized as follows. In Section 2, we give a brief overview
of previous studies on different link prediction algorithms. We also describe several al-
gorithms and definitions from graph theory and social networks analysis. In Section 3
we discuss online social networks whose structures were used in this study. Section 4
describes the experimental framework and the methods used for developing and eval-
uating a link predictor. The topological features used in this study are formally defined
in Section 4.1. Section 5 presents our numeric results including the AUC, the contri-
bution of each feature set, and the information gain value for the different features.
Lastly, in Section 6 we present our conclusions.

2. RELATED WORK

2.1. Social Network Topology

Social networks have several well-known characteristics, such as power law degree
distribution [Barabasi and Albert 1999], the small world phenomenon [Watts and
Strogatz 1998], and community structure [Girvan and Newman 2002]. In this study,
we make use of the fact that social networks have a community structure. Networks
with community structure can be grouped into sets such that each set of vertices is
densely and internally connected. There are many algorithms with different properties
for finding communities in social networks. In this study, we used the Louvain method,
a greedy algorithm that attempts to optimize the modularity of a partition of the
network [Blondel et al. 2008]. We use this algorithm in order to split each of the tested
social networks into disjoint communities. Consequently, we used these communities
in order to calculate the same-community feature (see Section 4.1).

2.2. Supervised Learning and Link Prediction

In this study we focus on the common approach for solving the Link Prediction prob-
lem by using supervised learning algorithms. This approach was introduced by Liben-
Nowell and Kleinberg in 2003 [Liben-Nowell and Kleinberg 2007], who studied the
usefulness of graph topological features by testing them on five co-authorship networks
datasets, each containing several thousands of authors. In 2006, Hasan et al. [2006]
extended their work on the DBLP and BIOBASE co-authorship networks (each con-
taining several hundreds of thousands of papers). Since its publication, the supervised
learning approach has been implemented by several other researchers [Doppa et al.
2009; Sa and Prudencio 2010; Leskovec et al. 2010]. Most of the solutions proposed
by these researchers were tested on bibliographic or on co-authorship datasets [Hasan
et al. 2006; Liben-Nowell and Kleinberg 2007; Doppa et al. 2009; Sa and Prudencio
2010]. In 2009, Song et al. used matrix factorization to estimate the similarity be-
tween vertices in real-life social networks, such as Facebook and MySpace [Song
et al. 2009]. In 2011, as a result of the issuing of the IJCNN social network chal-
lenge [Nachbar 2010], several papers were published. Each of these papers proposed
a different method for predicting links in social networks. Narayanan et al. won
the challenge by using a method that combined machine learning algorithms with
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Table I. Social Networks Datasets

Network Is Directed Vertices Number Links Number Date
Academia Yes 200,169 1,398,063 2011

DBLP No 902,664 3,212,217 2011
Facebook No 63,731 817,090 2009

Flickr Yes 1,133,54 7,237,983 2010
Flixster No 2,523,386 9,197,338 2010
Google+ Yes 211,187 1,506,896 2012
Gowalla No 196,591 950,327 2010
Twitter Yes 2,085 491,194 2009

TheMarker No 65,953 1,572,684 2011
YouTube Yes 1,138,499 4,945,382 2007

deanonymization [Narayanan et al. 2011]. Cukierski et al. won second place by ex-
tracting 94 distinct graph features and using the Random Forest algorithm in order
to analyze the training data (consisting of several thousands of links) [Cukierski et al.
2011]. Recently, Fire et al. presented a method for predicting links inside communities;
their methods used supervised learning ensemble classifiers that were constructed by
only using a small training set which contained several hundreds of examples [Fire
et al. 2012a].

In order to build an efficient classifier for link prediction, it is crucial to define and
calculate a set of graph structural features. When dealing with large-scale graphs that
may include millions of vertices and links, one of the challenges is the computationally
intensive extraction of such features. For example, Facebook has more than one billion
registered users and each month many new users are added [Facebook-Newsroom
2013]. Moreover, the power law degree distribution in social networks suggests that
there are some individuals with a large number of connections (hubs). Computing local
topological features on a subgraph consisting only of the friends of these individuals
may be computationally intensive. In our previous work [Fire et al. 2011], we presented
a method for solving the Link Prediction problem in large-scale online social networks,
by using easy-to-compute topological features.

3. ONLINE SOCIAL NETWORKS DATASETS

In this study we apply link prediction classifiers to ten social network datasets (see
Table I): Academia.edu, DBLP, Facebook, Flickr, Flixster, Google+, Gowalla, The-
Marker, Twitter, and YouTube.

Academia.edu. Academia.edu is a platform for academics to share and follow re-
search underway in a particular field or discipline. Academics upload their papers to
share them with other academics in over 100,000 research areas. An Academia social
network member may choose to follow any of the other members in this network, hence
the directed nature of the links within this network.

DBLP. DBLP (Digital Bibliography and Library Project) is a computer science bib-
liography Web site that lists over 1.3 million articles on computer science. It tracks
various well-known journals, such as ACM Transactions, as well as conference pro-
ceedings papers. The publication’s co-authorship network is commonly used as a social
network for empiric purposes.

Facebook. Facebook is a social networking service and Web site launched in February
2004. As of October 2012, nearly one billion users have active Facebook accounts. Since
the friendship link between two members must be reciprocal, the existence of a link
between member A and member B induces a mutual connection. We therefore refer to
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Facebook’s underlying friendship graph as an undirected one. The Facebook data used
in this research was obtained from Viswanath et al. [2009].

Flickr. Flickr is an image and video hosting Web site that enables its members to
socially interact via comments and follow each other by means of posted videos and
images. Links between members do not require mutual approval since one may choose
to follow any other visible member. The underlying graph that represents the Flickr
social network is therefore regarded as directed. We obtained a subgraph of Flickr
users from Nachbar [2010].

Flixster. Flixster is a social movie site which allows users to share movie ratings,
discover new movies, learn about movies, and communicate with other. We evaluated
our link prediction on a part of the Flixster social network download from the Social
Computing Data Repository at Arizona State University [Zafarani and Liu 2009].

Google+. Google+ is a social networking service and Web site offered by Google. A
Google+ member can add any other member to his circles, creating a directed social
graph. We used a dedicated crawler to obtain this dataset which contained more than
250,000 users.

Gowalla. Gowalla is a location-based social networking Web site where users share
their locations by checking-in. The friendship network is undirected and consists of
196,591 vertices and 950,327 links. This dataset was obtained from the work of Cho
et al. [2011].

Twitter. Twitter is an online social networking and microblogging service that en-
ables its users to send and read text-based posts. Each member can follow other mem-
bers, creating a directed social network graph. We used the Twitter graph from the
work of Cha et al. [2010]; however, we referred only to the elite of the Twitter subgraph
that is, the subgraph of users with more than 30,000 followers [Avin et al. 2011].

TheMarker Cafe. TheMarker Cafe is an Israeli online social network site that allows
its members to connect and interact. Since most of its members are Israelis, most inter-
action and communication among members is done in Hebrew. Due to the geographic
and demographic nature of this network, it is smaller in scale compared to the other
networks. TheMarker friendship connection is reciprocal, hence its underlying social
structure may be represented as an undirected graph.

YouTube. YouTube is a popular video-sharing site that includes a social network.
YouTube switched from directed links to a two-phase symmetric link creation process
in 2007. In this article we use the dataset published by Mislove et al. [2007], which was
collected while YouTube was still a directed graph.

In summary, DBLP, Facebook, Flixster, Gowalla, and TheMarker are undirected
networks while Academia.edu, Google+, Flickr, Twitter, and YouTube are directed net-
works. Details of the datasets are summarized in Table I.

4. METHODS AND EXPERIMENTS

As our goal was to identify and predict a set of hidden links within a social network
structure, we chose to use machine learning methods and develop link prediction classi-
fiers which can predict the likelihood of a link existence in the social graph. We collected
several social network datasets for this purpose. Some of the datasets (Academia.edu,
Google+, and TheMarker) were collected using a dedicated Web crawling code that had
been previously developed. The other datasets (from DBLP, Facebook, Flickr, Flixster,
Gowalla, Twitter, and YouTube) were gathered from several online resources.
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In order to use a machine learning algorithm, we first need to generate a training
set that consists of many instances. Every training instance represents a possible
candidate link. The target attribute is a binary attribute that indicates the existence
or absence of a link. Since we focused on predicting links based on graph topology only,
we extracted a set of features from the corresponding graphs of the social networks.
These attributes were then fed into WEKA [Hall et al. 2009], a popular suite of machine
learning software written in Java and developed at the University of Waikato, New
Zealand. In addition to these features sets, the WEKA software also received, for each
social network, a set of links included in the graph (also referred to as positive links)
as well as a set of links not part of the social graph’s original links set (referred to
as negative links). Due to the large scale of the tested social network, we were able
to create our link prediction classifiers with large quantities of positive and negative
links as training examples. However, we wanted to study how different training set
sizes affect the performance of our classifiers. Moreover, we also wanted to answer the
question, “what is an optimal training set size for our classifiers?” In order to discover
the optimal training set size, we constructed decision tree classifiers by using different
training set sizes. In order to compare the various classifiers, the ROC curve, which is
a standard technique for summarizing classifier performance over a range of trade-offs
between True Positive Rates (TPR) and False Positive error Rates (FPR), was used.
Each point in the curve corresponds to a particular cut-off, with the x-value as the false
positive value (1-specificity) and the y-value as the sensitivity value. Points closer to
the upper right corner correspond to lower cut-offs where points closer to the lower left
corner correspond to higher cut-offs. The choice of the cut-off thus represents a trade-
off between sensitivity and specificity. Ideally, one would want high values of both so
that the model can well predict both the existence and the absence of links. Usually,
a low cut-off gives a higher sensitivity. Conversely, a high cut-off gives a lower false
positive rate, at the price of lower sensitivity. In terms of classifier comparison, the
best curve is the one that is the leftmost, the ideal one coinciding with the y-axis. Thus,
the AUC is an accepted performance metric for a ROC curve. The AUC range is [0,1].
The area under the diagonal is 0.5. This value represents a random classifier. On the
other hand, a value of 1 represents an optimal classifier. The area under the ROC curve
(AUC) has become the de facto performance measure for link prediction tasks because,
unlike other accuracy measures, AUC is not influenced by the imbalance distribution
of the classes [Menon and Elkan 2011].

By using the different classifier’s AUC results together with a nonlinear regression
model, we successfully constructed a nonlinear prediction model for a training set size
that can give near-optimal AUC results. In regards to the goal of developing a preferred
classifier, we then performed supervised learning using various machine learning
algorithms. The rest of this section describes the set of features extracted from the
social network graphs and the methods used to compose the training, find the optimal
training set size, and test both sets and the machine learning algorithms examined.

4.1. Feature Extraction

This section describes all the features extracted and used during our experiment. Let
G = 〈V, E〉 be the graph that represents the topological structure of a general social
network. Links in the graph are denoted by e = (u, v) ∈ E, where u, v ∈ V . Our aim
was to build a simple classifier using machine learning techniques so that for each two
vertices (also referred to as vertices) v, u ∈ V can predict whether or not the connection
between u and v has a high probability of existing. Such a classifier could then be used
to decide whether (u, v) ∈ E or (u, v) /∈ E.

The features for this classifier were extracted from the topological structure of the
graph. For each link candidate for classification, we extracted a set of topological
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features. These features assist in estimating the chances that a given link indeed
exists in the graph. The link features depend on the type of the graph. If the graph is
directed, then we can extract more features based on the direction of the links. Next
we describe the topological features used to build the classifier.

4.1.1. Vertex Features. Let be v ∈ V , a neighborhood (�(v)) of v is defined as the set
of v’s friends, namely, vertices that are adjacent to v. In directed graphs the set of
users that v follows (i.e., there is a directed link from v to these users) is different
from the set of users that follow v (i.e., there is a directed link from them to v). We can
therefore define outgoing (�out(v)) and incoming (�in(v)) neighborhoods. A neighborhood
of v can also include v or exclude it from the set of vertices. Inclusion and exclusion
of v in the neighborhood generate subgraphs that are very different with respect to
their topological properties, as shown next. The following are the formal definitions of
neighborhoods used to extract topological features.

�(v) := {u|(u, v) ∈ E or (v, u) ∈ E}.
�in(v) := {u|(u, v) ∈ E}.

�out(v) := {u|(v, u) ∈ E}.
�+(v) := �(v) ∪ {v}. (1)

Based on the definition of neighborhoods, we can also define subgraphs induced by
these neighborhoods. We defined the neighborhood subgraphs of v as

nh-subgraph(v) = {(x, y) ∈ E|x, y ∈ �(v)}
nh-subgraph+(v) = {(x, y) ∈ E|x, y ∈ �+(v)}. (2)

Using the preceding neighborhood definitions, we can create the following features for
vertex v.

Vertex degree features. Using the neighborhoods definition we defined the degree of v
as

d(v) = |�(v)|. (3)

For a directed graph G, we defined the in-degree, out-degree, and bi-degree features
as follows: din(v) = |�in(v)|, dout(v) = |�out(v)| and dbi(v) = |�in(v) ∩ �out(v)|. Using the
degree features, we defined degree-density features as

in-degree-density(v) = din(v)
d(v)

,

out-degree-density(v) = dout(v)
d(v)

,

bi-degree-density(v) = dbi(v)
d(v)

. (4)

In social networks, the degree feature represents the number of friends or followers
that user v has.

Vertex subgraphs features. Using the neighbor subgraphs, we defined the following
features that denote the number of links within the neighbor subgraphs for each
vertex v.

Subgraph-Link-Number(v) = |nh-subgraph(v)|,
Subgraph-Link-Number(v)+ = |nh-subgraph+(v)|. (5)
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We can also define the density of each subgraph.

Density-nh-subgraph(v) = d(v)
|nh-subgraph(v)| ,

Density-nh-subgraph+(v) = d(v)
|nh-subgraph+(v)| . (6)

If the G is directed, we can also calculate both the number of Strongly Connected
Components (SCC) and the number of Weakly Connected Components (WCC)
[Gibbons 1985] within the vertex subgraphs. The average number of vertices in these
components can also be useful for classifying links (later shown in Section 5).

avg-scc(v) = d(v)
scc(nh-subgraph(v))

,

avg-wcc(v) = d(v)
wcc(nh-subgraph(v))

,

avg-scc+(v) = d(v)
scc(nh-subgraph+(v))

. (7)

The number of weakly or strongly connected components in v’s subgraph may provide
an indication as to the number of different social groups to which v belongs.

4.1.2. Link Features. Let be u, v ∈ V where e = (u, v) /∈ E. Using the neighborhoods of
u and v , one can extract several feature sets. These features include the number of
Common friends u and v have (Common friends(u,v)), the number of distinct friends u
and v have (Total friends(u,v)), the number of connections between u and v neighbor-
hoods (Friends measure(u,v)) , and many other features which we define shortly. These
features help us determine the likelihood that a connection between u and v exists.

Common friends. The Common friends of u, v ∈ V refers to the size of the common
set of friends that both u and v possess. The formal Common-friends definition for an
undirected graph G is

common- f riends(u, v) = |�(v) ∩ �(u)|. (8)

For a directed graph G, we can also define Common friends based on the link di-
rection: common friendsin(u, v) = |�in(v) ∩ �in(u)|, common friendsout(u, v) = |�out(v) ∩
�out(u)|, and common friendsbi(u, v) = |�bi(v) ∩ �bi(u)|. The relevance of the Common
friends feature is very intuitive. It is expected that the larger the size of the common
neighborhood, the higher the chances are that both vertices will be connected. The
Common friends feature was widely used in past work on link prediction on several
datasets and found to be very helpful [Huang et al. 2005; Liben-Nowell and Kleinberg
2007; Sa and Prudencio 2010; Song et al. 2009; Cukierski et al. 2011].

Total Friends. For two vertices u, v, we can define the number of distinct friends that
u and v have together, namely: Let be u, v ∈ V , we define the Total friends of u, v to be
the number of distinct neighbors u, v has.

total- f riends(u, v) = |�(u) ∪ �(v)|. (9)

Jaccard’s coefficient: Jaccard’s coefficient is a well-known feature for link prediction
[Huang et al. 2005; Liben-Nowell and Kleinberg 2007; Sa and Prudencio 2010; Song
et al. 2009; Cukierski et al. 2011]. The Jaccard’s coefficient, which measures the sim-
ilarity between sample sets, is defined as the size of the intersection divided by the
size of the union of the sample sets. In our approach it indicates whether two social
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network members (vertices in the corresponding graph) have a significant amount of
Common friends, regardless of their Total-friends set size. A higher value of Jaccard’s
coefficient denotes a stronger tie between two friends. The coefficient defines the ratio
between the number of Common friends and the number of Total friends, namely

jaccard′s-coe f f icient(u, v) = |�(u) ∩ �(v)|
|�(u) ∪ �(v)| . (10)

Transitive Friends. If G is a directed graph, we can calculate the number of transitive
friends of u, v and v, u.

transitive-friends(u, v) = |�out(u) ∩ �in(v)|. (11)

Preferential attachment score. One well-known concept in social networks is that
users with many friends tend to create more connections in the future. This is due to
the fact that in some social networks, like in the finance world, the rich get richer. We
estimate how “rich” our two vertices are by calculating the multiplication between the
number of friends or followers each vertex has, namely,

pref erential-attachment-score(u, v) = |�(u)| · |�(v)|. (12)

In several previous works on link prediction, this attribute was found to be a very
significant feature [Hasan et al. 2006].

Katz measure. In 1953, Katz proposed a path-ensemble-based proximity mea-
sure [Katz 1953]. The Katz measure is a variant of the shortest-path measure (see
Section 4.1.4). The idea behind the Katz measure is that the more paths there are be-
tween two vertices, and the shorter these paths are, the stronger the connection. The
Katz measure is defined as

Katz(u, v) =
lmax=∞∑
lmin=1

βl
∣∣pathl

u,v

∣∣, (13)

where |pathl
u,v| is the number of paths between u and v with a length of l. The problem

with the Katz measure is that it has cubic complexity. This complexity makes it unfea-
sible for use in large social networks. Consequently, we did not use the Katz measure
feature when building our classifier. Instead, we used the Friends measure, which can
be regarded as an approximation of the Katz measure.

Friends measure. When looking at two vertices in a social network, we can assume
that the more connections their neighborhoods have with each other, the higher the
chances are that the two vertices are connected. We accept the logic of this state-
ment and define the Friends measure as the number of connections between u and v
neighborhoods. The formal definitions of Friends measure is: Let be G = 〈V, E〉 and
u, v ∈ V

Friends-measure(u, v) =
∑

x∈�(u)

∑
y∈�(v)

δ(x, y), (14)

where we define the function δ(x, y) as

δ(x, y) =
{

1 if x = y or (x, y) ∈ E or (y, x) ∈ E
0 otherwise

.

One can notice that in undirected networks, the Friends measure is a private case of
the Katz measure where β = 1, lmin = 2, and lmax = 3.
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Opposite direction friends. For a directed graph G, we can create a specific measure
that indicates whether reciprocal connections exist between the vertices.

Opposite-direction- f riends(u, v) =
{

1 if (v, u) ∈ E
0 otherwise.

(15)

Same community. Let be V = ∐
C ′∈C

∐
u∈C ′ u, where C is the set of all disjoint com-

munities created from G by the Louvain method [Blondel et al. 2008]. We say that
u, v ∈ V are in the same community if ∃C ′ ∈ C where u, v ∈ C ′. The formal definition of
same-community feature is

same-community(u, v) =
{

1 if ∃C ′ ∈ C where u, v ∈ C ′.
0 otherwise

(16)

In case u and v were chosen at random, the Same-community feature can be used as
an easy-to-compute rule of thumb for predicting existence of link between u and v11.

4.1.3. Link Subgraph Features. Let be u, v ∈ V using the neighborhoods definitions from
Section 4.1.1, we can define the following subgraphs.

nh-subgraph(u, v) = {(x, y) ∈ E|x, y ∈ �(u) ∪ �(v)},
nh-subgraph+(u, v) = {(x, y) ∈ |x, y ∈ �+(u) ∪ �+(v)}. (17)

These subgraphs contain data about the number of connections between the links of u,
v, including the inner connections between each vertex neighborhood. These types of
graphs were also used to extract features for link prediction by Cukierski et al. [2011].
Another subgraph from which we can create features is the inner-connection subgraph.

inner subgraph(u, v) = {(x, y) ∈ E|,
(x ∈ �(u) and y ∈ �(v)) or
(x ∈ �(v) and y ∈ �(u))}. (18)

In social networks, the inner subgraph represents the number of connections between
the friends of each user.

Link subgraphs links number. Using the previous definitions we can create features
by counting the number of links in each subgraph.

|nh-subgraph(u, v)|
|nh-subgraph+(u, v)|
|inner-subgraph(u, v)| (19)

Link subgraphs components number. We can also count the number of strong and
weak components for each subgraph.

scc(nh-subgraph(u, v)), wcc(nh-subgraph(u, v))
scc(nh-subgraph+(u, v))
scc(inner-subgraph(u, v)), wcc(inner-subgraph(u, v)) (20)

4.1.4. Path Features. Let be u, v ∈ V . We defined the following feature based on the
length of the path between u and v.

11Due to the fact that the evaluated social networks in this study are large-scale social networks with
hundreds of thousands of links, we precompute the community structure of each social network in order to
optimize our algorithms’ performances. However, in the case of predicting links in small communities, it is
advised to avoid precomputing the Same-community feature due the risk of overfitting. In order to predict
links inside small communities, we recommend using different subsets of features instead [Fire et al. 2012a,
2012b].
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Shortest Path. We defined the Shortest-path(u,v) feature to be the shortest path
length between u and v in G. If G is a directed graph, we can also define the feature
shortest path(v,u). The shortest-path feature has been explored in several papers and
found to be one of the most significant features in link prediction [Hasan et al. 2006].

4.2. Training Set Size

Due to the large scale of the tested social network it is possible to train the link
prediction classifiers on hundreds of thousands of positive and negative examples. Since
the training set size directly affects the time required for building a classifier, we wanted
to study how the training set size affects the performance of the classifiers. In addition,
the ability to train an accurate classifier using a small dataset may enable building
link prediction models in cases where only a small part of the social network is known.

In this study, in order to find the minimal balanced training size required, we first cre-
ated two datasets (“easy” and “hard”) each with 100,000 positive examples and 100,000
negative examples for every investigated social network. The “easy” dataset contained
foreseen links where the negative examples were uniformly chosen at random from all
unconnected pairs of vertices. In contrast to chosen false links in the “easy” dataset, in
the “hard” dataset, the endpoints of the false links are two hops apart from each other
(in the absence of the foreseen link). Previous studies have shown that in many cases,
the existence of common friends is a very good predictor for the existence of a link
between the two vertices [Liben-Nowell and Kleinberg 2007; Cukierski et al. 2011].
Such links represent a much more difficult classification problem, hence we refer to
this dataset as a “hard dataset”. Using the hard dataset enables simulation of diffi-
cult cases of missing link prediction scenarios between two vertices that may share
many similar features. Moreover, using the hard dataset may assist in simulating link
prediction inside small group and closed communities.

Subsequently, we created several training sets, each with a different size but the
same number of positive and negative examples. The sizes of the training sets ranged
from 2,000 to 200,000 examples, with at least 18 training sets of different sizes for each
social network. During the evaluation process, we constructed and evaluated a chosen
classifier on more than 360 different training sets of different scales. Moreover, the
chosen classifier needed to be evaluated by using the tenfold cross-validation method,
which is a very time-consuming evaluation method. To cope with these challenges, we
chose to use the J48 decision tree algorithm to construct a classifier on each training
set. We chose the J48 classifier due to its low run time and relatively high performance.
Moreover, in our previous study [Fire et al. 2011], we demonstrated that using the J48
classifier for solving similar link prediction problems returns near-optimal results in
many cases.

After constructing and evaluating the J48 classifier on each training set, for each so-
cial network, we presented the relations between different training set sizes and their
received AUC results on a graph (see Figures 1 and 2). By observing these graphs, we
noticed correlations between the different training set sizes and their matched AUC re-
sults in each social network. The observed correlations pattern resembled the behavior
of the Gompertz function, therefore, we used Gompertz regression [Erickson et al. 2006;
d’Onofrio 2005] in order to find the correlation between the size of the training set and
the classifiers’ AUC (see Figures 1 and 2). We created two Gompertz regression models
for each social network: one for the “hard” datasets and one for the “easy” datasets. Gom-
pertz regression is a nonlinear regression based on the Gompertz function f (x) = aebecx

.
Due to its flexibility, the Gompertz function is frequently used for modeling a variety of
processes, such as population expansion in a confined space [Erickson et al. 2006] and
growth of tumors [d’Onofrio 2005]. We calculated the Gompertz regression for each one
of the social networks (see Table II).

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 10, Publication date: December 2013.



10:12 M. Fire et al.

Fig. 1. Google+: Predicting decision tree classifier AUC using different training set sizes.

Fig. 2. Facebook: predicting decision tree classifier AUC using different training set sizes.

Table II. Gompertz Regressions Results and AUC Predictions

Network “Easy” Gompertz AUC
(50K)

AUC
(x → ∞)

“Hard” Gompertz AUC
(50K)

AUC
(x → ∞)

Academia 0.996e−0.019e−0.062x
0.995 0.996 0.976e−0.04e−0.177x

0.976 0.976

DBLP e−0.009e−0.104x
0.9999 1 0.982e−0.048e−0.058x

0.979 0.982

Facebook 0.99e−0.024e−0.046x
0.9876 0.99 0.908e−0.031e−0.037x

0.9036 0.908

Flickr 0.998e−0.042e−0.812x
0.998 0.998 0.954e−0.026e−0.058x

0.9526 0.954

Flixster 0.998e−0.007e−0.044x
0.998 0.997 0.994e−0.012e−0.171x

0.994 0.994

Google+ 0.999e−0.011e−0.054x
0.998 0.999 0.983e−0.027e−0.096x

0.983 0.983

Gowalla 0.997e−0.015e−0.042x
0.995 0.997 0.957e−0.036e−0.175x

0.957 0.957

Twitter 0.987e−0.018e−0.239x
0.987 0.987 0.977e−0.022e−0.084x

0.9767 0.977

TheMarker 0.975e−0.037e−0.188x
0.975 0.975 0.932e−0.035e−0.041x

0.9278 0.932

YouTube 0.999e−0.015e−0.204x
0.999 0.999 0.999e−0.012e−0.097x

0.999 0.999
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Fig. 3. Extrapolation of the link prediction classifiers for different social networks based on the Gompertz
regression.

The results of the regression models are presented in Table II and in Figure 3. In all
the regression models, the maximal residual standard error was 0.0038, indicating a
good adequacy of our regression models.

According to the regression results, we discovered that on the one hand, many link
prediction classifiers reach their near a maximal AUC with training sets that contain
several thousands of examples only. On the other hand, in some social networks, in
order to get near-maximal AUC, a training set with tens of thousands of examples
is required. By using the Gompertz regression results, we can estimate the maximal
AUC that can be obtained using a decision tree classifier. Moreover, we can see that in
almost all the social networks, a near-maximal AUC can be obtained by using training
sets with up to 50,000 examples (25,000 positive links and 25,000 negative links).
Therefore, in the rest of this study, we constructed and evaluated our classifiers using
training sets with 50,000 examples.

4.3. Experimental Setup

As part of our experiment we built a classifier for each social network graph G by
randomly choosing 25,000 positive links that exist in the graph and 25,000 negative
links that do not exist in the graph. Additionally, we randomly chose 25,000 negative
links, where the shortest path between each link vertices was two. By using these
randomly selected links, we created two datasets: the first dataset (i.e., the “easy”
dataset) was built by taking 25,000 positive links and 25,000 negative links and the
second dataset (i.e., the “hard” dataset) was built by taking 25,000 positive links and
25,000 negative links in the distance of two hops. These sets were formed in order to
create datasets to train and evaluate our classifiers.

Next, in order to extract features, we developed a Python code using the Networkx
graph package [Hagberg et al. 2008]. This code extracted the vector of features
for each link (u, v) in the training sets. For each vertices u, v, we extracted all the
vertex features (see Section 4.1.1) and all the link features for the link (u, v) (see
Section 4.1.2). In total, we extracted 54 features for directed graphs and 34 features
for undirected graphs. For each social network in our datasets, we created several
feature subsets according to different characteristics of the features. Specifically, we
created the following feature subsets.

—All-features subset contains all the extracted features: 54 features for directed net-
works and 34 for undirected networks.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 10, Publication date: December 2013.



10:14 M. Fire et al.

—Friends-features subset contains the following features: vertices degree features
Common friends; Total friends Preferential attachment score Same community, and
Friends measure. A total of 9 features for undirected networks and 16 features for
directed networks were created.

—Friends measure and Same community (FM & SM) contains the Friends-measure
and the Same-community features.

—Common-friends subset contains only the Common-friends feature.
—Friends-measure subset contains only the Friends-measure feature.
—Jaccard’s coefficient contains only the Jaccard’s coefficient feature.
—Same community contains only the same-community feature.

Based on the results of our previous experiments [Fire et al. 2011], we used the J48
decision trees classifier and two ensemble learning methods, namely, Bagging and Ran-
dom Forest. Ensemble learning, also known as “committee machines” or a mixture of
experts, is a well-known technique in machine learning in which the outputs of several
classifiers (experts) are combined. Each of the classifiers solves the same original task.
Combining these classifiers usually results in a better composite global model, with
more accurate and reliable estimates or decisions than can be obtained from using a sin-
gle model. This idea imitates a common human characteristic: the desire to obtain sev-
eral opinions before making any crucial decision. It is known that combining different
types of classifiers can improve predictive performance, mainly due to the phenomenon
that various types of classifiers have different “inductive biases”. In particular, it has
been shown that combining diverse classifiers can be used to reduce the variance error
(i.e., error due to sampling variation) without increasing the bias error (i.e., error due to
an inadequate model). Additionally, many participants in prediction contests combine
various models in order to achieve the best results (see, for example, Koren [2009]).

As has been shown in our previous work [Fire et al. 2011], the ensemble schemas
achieve the highest predictive performance; however, their running times are very
long. Among the single models, the J48 decision tree and the Artificial Neural Networks
(ANNs) also achieved a relatively high performance. However, ANN models are difficult
to interpret and have longer construction times than J48. Consequently, we found
that the J48 provides the best trade-off between computational costs and accuracy
since its AUC results are, in most cases, slightly lower than those of the ensemble
methods. Conversely, its computational times are much faster. Another advantage
of the J48 is that its models are easy to understand and analyze. Obviously, when
the predictive performance is of the highest importance, more time-consuming and
sophisticated methods can be applied. The performance observed for the four evaluated
ensemble methods, Bagging, Adaboost, Rotation Forest, and Random Forest, was very
similar for all these methods in most cases. Therefore, our selection of the ensemble
algorithms was mainly motivated by their time performance differences, and the two
quickest, namely Bagging and Random Forest, were chosen. We used WEKA’s [Hall
et al. 2009] J48 (a variant of the well-known C4.5), Bagging, and Random Forest
implementations of the corresponding algorithms. For each of these algorithms, most
of the configurable parameters were set to their default values except for the following.
For the J48 classifier, the minimum number of instances per leaf parameter was set
to 10. The number of iterations for all ensemble methods was set to 100. The Bagging
algorithm was evaluated using J48 as the base classifier with the number of instances
per leaf set to 10.

5. RESULTS

For each social network and subset of features we evaluated the specified machine
learning algorithms (see Section 4.3) using a 10-fold cross-validation approach. For
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Fig. 4. AUC results: Bagging algorithm using all the features on easy datasets.

Fig. 5. AUC results: Bagging algorithm using all the features on hard datasets.

example, the AUC results of the Bagging algorithm on all the networks using a set of
all features on easy and hard datasets are presented in Figures 4 and 5.

It can be seen that on the easy datasets, the Bagging ensemble achieves very
high predictive performance. On most of the evaluated networks the AUC values
approximate to 1. The more difficult social networks for link predictions are TheMarker
Cafe among the undirected and Twitter among the directed networks. The reason for
the relatively low (yet the AUC is above 98 and 99% correspondingly) prediction per-
formance on these networks is due to the nature of these social networks. TheMarker
Cafe social network contains many random connections between its users, while the
Elite subgraph of Twitter is very dense [Avin et al. 2011], making link prediction a
more difficult task.

However, on the hard datasets, the picture is somewhat different. The AUC results
are lower than on the easy datasets, especially for undirected networks. This is ex-
plained by the short distance of two between the negative links. The more difficult
network, in this case, is Facebook, with an AUC of 0.923. We expect that the predictive
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Table III. Easy and Hard Datasets - Random Forest AUC Results

All- Friends- Friends- Common- Jaccard’s- Same-
Network Training features features FM&SM Measure Friends coefficient community

Academia
Easy 0.998 0.996 0.978 0.962 0.865 0.864 0.834
Hard 0.985 0.981 0.85 0.849 0.841 0.807 0.563

DBLP
Easy 0.9998 0.999 0.994 0.973 0.971 0.971 0.89
Hard 0.989 0.989 0.812 0.811 0.874 0.801 0.568

Facebook
Easy 0.993 0.989 0.974 0.964 0.946 0.943 0.827
Hard 0.923 0.915 0.803 0.817 0.88 0.812 0.58

Flickr
Easy 0.998 0.999 0.967 0.921 0.832 0.831 0.82
Hard 0.96 0.95 0.803 0.804 0.864 0.851 0.59

Flixster
Easy 0.998 0.998 0.969 0.865 0.711 0.711 0.81
Hard 0.996 0.995 0.924 0.924 0.922 0.961 0.537

Google+
Easy 0.9996 0.995 0.99 0.9586 0.899 0.89 0.944
Hard 0.989 0.98 0.89 0.888 0.882 0.898 0.5355

Gowalla
Easy 0.996 0.995 0.976 0.922 0.885 0.883 0.87
Hard 0.966 0.968 0.837 0.837 0.874 0.817 0.545

TheMarker
Easy 0.983 0.978 0.958 0.956 0.941 0.922 0.65
Hard 0.945 0.937 0.831 0.838 0.86 0.759 0.534

Twitter
Easy 0.987 0.9917 0.938 0.915 0.967 0.941 0.695
Hard 0.983 0.981 0.813 0.798 0.88 0.813 0.598

YouTube
Easy 0.999 0.9996 0.988 0.925 0.761 0.761 0.868
Hard 0.999 0.999 0.942 0.941 0.887 0.9 0.569

performance on these social networks as depicted by our evaluation is lower than would
be in practice. The reason for that is a relatively high number of missing links in the
evaluation dataset itself. There might be social links that are correctly classified by
machine learning classifiers as existing links, but due to the evaluation procedure are
incorrectly treated as false positive prediction. We assume that this phenomenon of
relatively high number of missing links in the Facebook social networks could be the
result of user privacy settings which limit the access of our crawlers to the users’ ex-
isting connections in these networks. This limitation causes the collected dataset to be
more biased than the other crawled social networks. Facebook provides its users not
only the option of hiding their friends list, but also the option to limit receiving friend
requests from friends-of-friends12 only. This type of privacy setting not only limits our
crawler’s access, but can also change the social network topology to be different from
other more public social networks. We assume that these differences cause our classi-
fiers’ performance to decline. The decline in the AUC for Facebook is less stressed in
the easy dataset because there is only a small chance for a link between two profiles to
have no common friends. The chance of such a link to be hidden by privacy settings or
not picked up by a crawler is even smaller. Table III presents the AUC results of the
Random Forest method for each social network on all evaluated feature subsets. The
results of the J48, Random forest, and Bagging algorithms on the Google+ network
using all evaluated feature subsets are presented in Figure 6.

It can be seen that the best performance is achieved by using the set of all features.
However, training classifiers on a large number of features is typically very time con-
suming and computationally intensive. The classifiers’ performance using the subset
of the friends features only is only slightly lower in most cases, and sometimes is the
same or even higher than using all the features. On the other hand, the computational
times required for learning and classification using a small number of features only are

12https://www.facebook.com/help/privacy.
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Fig. 6. AUC results: J48, Bagging, and Random Forest algorithms on Google+ network using various subsets
of features (easy dataset).

Fig. 7. AUC results: J48, Bagging, and Random Forest algorithms on IJCNN Flickr social network using
various subsets of features.

much faster. Additionally, we can see that the new Friends measure provides a better
predictive performance than the well-known Common-friends and Jaccard’s-coefficient
features. It can also be seen that another new feature, Same community, improves the
results of the Friends measure on the easy datasets (see Table III).

We used the Friedman test proposed by Demsar [2006] for validating the statistical
significance of the differences between the evaluated sets of features. For this test we
focused on the results of the Random Forest method. With a confidence level of above
0.99, the results reveal that there are significant differences between the evaluated
sets of features. We then proceeded with the Nemenyi post hoc test [Demsar 2006] to
compare the feature sets to each other. Interestingly, the following groups of features
subsets were found not to be significantly different: (A) All features (average rank 1.1)
versus Friends features (average rank 1.9), (B) Common friends (average rank 4.5)
versus. Friends measure (average rank 4.5) versus Jaccard’s coefficient (average rank
5.5) and versus Friends measure and Same community (average rank 3.9), and (C)
Jaccard’s coefficient (average rank 5.5) versus Same community (average rank 6.7).
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We also tested a version of our classifiers13 against the IJCNN social network chal-
lenge test set. The IJCNN test set was created using the different random edge chooser
algorithm. The IJCNN random algorithm was written in order to make link prediction
more difficult and can be somewhat biased. Using the IJCNN random algorithm we
created a training set of 25,000 positive edges and 25,000 negative edges, and built a
classifier using the features presented in Section 4.1. The AUC results of our classi-
fier using the J48, Bagging, and Random Forest algorithms on all feature subsets are
presented in Figure 7.

It can be seen that on this test data the Random Forest method achieves the highest
AUC result using all the features. The results of other methods and of using vari-
ous features subsets are much lower. Interestingly, the Bagging and J48 algorithms
demonstrate better performance using only the friends-features subset than on all the
features. This can be caused by the tendency of J48 method to overfit the training data
in the presence of a large number of features. However, the Random Forest method,
which constructs an ensemble of the J48 decision trees, randomly selects just a subset
of features for each tree. Thus, it does not suffer from the aforementioned problem and
achieves the highest AUC performance. A variant of our classifier that used most of
the features in the All-features subset and the Rotation Forest method participated
in the IJCNN social network challenge and received a result of 0.9244 in AUC on the
challenge test set The average time of extracting features for each edge in the IJCNN
test set was 0.6414 seconds, as opposed to the 10 seconds per edge that was obtained
by Cukierski et al. [2011].

To obtain an indication of the usefulness of the various features, we analyzed their
importance using Weka’s information gain attribute selection algorithm. The top at-
tributes with the highest rank for each one of the training sets for all social networks
are presented in Tables IV and V.

It can be seen that different attributes are the most influential for different social
networks and many features turn out to be useless for predicting links in the hard
dataset. However, the Friends measure is among the most influential features on
almost all of the networks. In addition, the average information gain of this feature
is the highest among all the evaluated features. Furthermore, it can be concluded
by Table V that features which only exist in directed social networks, such as the
Opposite-direction-friends feature and WCC features, are very useful for predicting
directed social networks links.

5.1. Ranking Performance Evaluation

We used the Average Precision (AP) measure in order to verify the ranking performance
of our algorithm. The AP is a frequently used measure in the information retrieval and
machine learning domains. The AP is formulated as

1
N

N∑
k=1

P(k),

where P(k) is the Precision at top k (precision @ k) which measures how many of top-k
positive predictions of an algorithm are actually correct, and N is the total number of
considered cut-off points. Usually, precision @ k is calculated per social network user in
order to evaluate how well the link recommender algorithm performs in recommending

13The IJCNN link prediction classifier was constructed by using all features except the Same-community
feature.
14We ran our algorithm using Python 2.7 on a regular Dell Latitude E6420 laptop with i7 core, and 8GB
RAM.
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Table IV. InfoGain Values of Different Features for Directed and Undirected Networks

Table V. InfoGain Values of Different Features for Directed Networks
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Fig. 8. Bagging over all features AP results for different N values on balanced hard datasets.

the user new links. However, in our study we wanted to optimize the recovery of missing
links for each social network. Therefore, our precision @ k estimated the precision in
recovery of missing links from each social network point of view instead of the user’s
point of view. This measure is particularly appropriate in the context of missing link
prediction where we aim to discover the unknown existing links in the network. Thus,
for our AP calculation, we order all the link predictions in descending order of their
probability to exist in the network and measure how many of top-k links actually exist
in the network. The AP is then calculated as an average of the precision @ k values for
all k’s from 1 to N.

The experiment was performed on balanced test sets consisting of 50,000 positive
and 50,000 negative examples. Figure 8 presents the the APs for various N values
using the Bagging algorithm over all features in the hard datasets. It can be seen that
the higher the N the lower is the AP. This means that, as expected, there are more false
positive predictions for lower probability cut-off points. However, even for the highest
evaluated N = 50,000 (equal to the total number of positive examples in the test set),
the AP is very high for all datasets, and above 97% for most of them.

5.2. The Effect of Imbalanced Data on Predictive Performance

In many link prediction scenarios, there are many more negative links than positive
links. This phenomenon is referred to in the literature as the class imbalance prob-
lem [Chawla et al. 2004]. In particular, class imbalance usually occurs when, in a clas-
sification problem, there are many more examples of a certain class than of another
class. Imbalanced datasets pose difficulties for induction algorithms. In particular,
standard machine learning techniques may be “overwhelmed” by the majority class
and ignore the minority class. A well-known method in machine learning for overcom-
ing the class imbalance problem is undersampling the majority class (in our case, the
negative links), as described in Chawla et al. [2004]. After training the classifier from
a balanced dataset, the classifier can still be used for addressing imbalanced datasets.
For this purpose, one should use the positive class probability which is provided by
the classifier to rank the candidate links in descending order. Moreover, certain link
prediction challenges [Cukierski et al. 2011; Narayanan et al. 2011] and works [Guha
et al. 2004; Hasan et al. 2006; Leskovec et al. 2010] used balanced training and test sets
for evaluating the performance of machine learning algorithms despite the fact that
the distribution of the resulting testing data does not represent the same challenges as
the real-world distribution. While in the evolution scenario frequently used in previous
link prediction works the imbalanced assumption holds, in the scenario that motivates
this work, the imbalanced setting is partially relaxed due to the fact that we aim to
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Table VI. AUC for Various Imbalance Levels (Hard and Easy Dataset, All Features, Bagging)

Network Training set 0.1% 0.2% 1% 2% 5% 10% 50%

Academia
Easy 0.992 0.989 0.989 0.989 0.989 0.989 0.989
Hard 0.983 0.986 0.988 0.987 0.987 0.986 0.987

DBLP
Easy 0.999 0.999 0.999 0.999 0.999 0.999 1.000
Hard 0.984 0.986 0.985 0.986 0.987 0.987 0.987

Facebook
Easy 0.996 0.995 0.995 0.995 0.996 0.995 0.996
Hard 0.913 0.918 0.919 0.916 0.919 0.918 0.918

Flickr
Easy 0.997 0.997 0.997 0.997 0.997 0.997 0.997
Hard 0.974 0.96 0.964 0.96 0.962 0.962 0.963

Flixster
Easy 0.988 0.988 0.990 0.989 0.989 0.988 0.988
Hard 0.998 0.996 0.996 0.996 0.996 0.996 0.996

Google+
Easy 0.999 0.999 0.999 0.999 0.999 0.999 1
Hard 0.992 0.992 0.99 0.99 0.989 0.989 0.99

Gowalla
Easy 0.99 0.998 0.997 0.998 0.998 0.998 0.998
Hard 0.963 0.962 0.969 0.968 0.965 0.965 0.965

TheMarker
Easy 0.990 0.983 0.984 0.983 0.983 0.983 0.983
Hard 0.931 0.935 0.933 0.938 0.941 0.94 0.937

Twitter
Easy 0.984 0.990 0.990 0.991 0.990 0.990 0.990
Hard 0.978 0.988 0.987 0.988 0.987 0.987 0.985

YouTube
Easy 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Hard 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Fig. 9. Bagging average precision results for different imbalance levels (using all features on hard datasets).

solve the problem of uncovering hidden or missing links. In previous work [Fire et al.
2012b], we demonstrated that similar methods of using balanced training sets can
help predict hidden links in high fractional datasets. Obviously there are other meth-
ods for overcoming the imbalance challenge and these methods have been evaluated
with previous link prediction methods [Lichtenwalter et al. 2010].

Previous works show that the imbalance level of the training set affects the AUC
performance of the test set (see Mazurowski et al. [2008]; Lichtenwalter et al. [2010]).
However, while a balanced training set can always be generated by undersampling
the overrepresented class, as described in Section 4.2, we do not have control of the
imbalance level of the test set and in some cases we cannot even estimate the imbalance
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level. In this work, we examined a different scenario in which a balanced training set
is generated and used to train a classifier which is then tested on an imbalanced test
set. For these experiments, two nonoverlapping subsets of data were selected from
the original datasets. The first subset of data consisting of 25,000 positive and 25,000
negative examples was used as balanced training set. The second subset consisted
of 50,000 positive and 50,000 negative examples and was used to generate test sets
for experiments with various data imbalance levels. For each test set all the negative
examples (i.e., 50,000) and the number of positive examples corresponded to the specific
imbalance level selected. The evaluated imbalance levels and the reason for their
selection are described next in this section.

Table VI presents the AUC performance for different imbalance levels using the Bag-
ging algorithm over all features in the hard and easy datasets. The selection of the ex-
amined imbalance levels is motivated by the work of Liben-Nowell and Kleinberg [2007]
showing that the imbalance level on several real link prediction problem datasets varies
from 0.1% to almost 0.5%; and by the work of Mazurowski et al. [2008], who evaluated
the effects of 1%, 2%, 5%, 10%, 20%, and 50% imbalance levels. Similar to Mazurowski
et al. [2008], we define the positive class prevalence index c as c = Npos

Ntot
, where Npos is

the number of positive examples and Ntot is the total number of examples in the test
set. For the experiments the number of negative examples was kept constant and equal
to 50,000. The number of positive examples varies correspondingly for each prevalence
index c. For the case of 0.1% imbalance level (c = 0.001) the number of positive exam-
ples in the test set is 50; and for 0.5% imbalance level the number of positive examples
in the test set is 250, and so on. In total, we evaluated the following seven imbalance
levels: 0.1%, 0.5%, 1%, 2%, 5%, 10%, and 50% where the last one corresponds to the
equal prevalence of both classes. As mentioned before, the AUC results for all these
imbalance levels are presented on Table VI. It can be seen that the predictive perfor-
mance in terms of AUC remains stable over the different imbalance levels varying from
0.1% to 50%.

The results in Table VI indicate that if a balanced training set is used, the imbalance
level of the test set does not affect the AUC performance measured on the test set. This
conclusion corresponds with previous results showing that “AUC, unlike error rate, is
unaffected by the class distribution of the test set” [Weiss and Provost 2003]. It should
be noted that we examined only balanced training sets. We selected this balanced
strategy because Weiss and Provost [2003] show that in most cases “the balanced
distribution is within the optimal range” when using AUC as the performance measure.
Nevertheless, in some cases we might benefit from using a slightly imbalanced training
set. We leave this for future research.

Unlike AUC, the imbalance level of the test set does affect the values of other per-
formance measures like the AP. The results for this measure of the Bagging algorithm
on test sets with various imbalance levels and N = 100 are presented in Figure 9.
As expected, the performance of the AP drops as the imbalance level increases. Still,
near-optimal predictive performance is observed for test sets with a moderate low
percentage (1% and above) of positive class examples.

6. CONCLUSION

This article presents methods for constructing efficient and effective classifiers based
on a set of features that are easy and fast to calculate. We achieved this by defining
a set of computationally efficient features and extracting them from ten real social
network datasets. We created several feature subsets according to their characteristics
and evaluated the classifier performance for each one of these subsets with several
machine learning algorithms. The evaluation demonstrated that our models performed
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well in terms of AUC measures (also referred to as ROC area) for all the tested datasets
(see Table III and Section 5). The best results were obtained using all the features. We
furthermore demonstrated that it would be sufficient to obtain good results with a
relatively high AUC, even with a smaller subset of the features, such as the Friends
subset, which contains 9 features only.

Another contribution of this article is the introduction of a topological feature, the
Friends measure, which is simple to calculate. The experimental results demonstrated
that using the Friends measure for link prediction produces better results when com-
pared to the use of the well-known Common-friends and Jacquard’s-coefficient features.
Futhermore, using attribute information gain analysis, it was found that the Friends
measure is among the most influential features in all of the evaluated networks and
has the highest average information gain (see Table IV). We demonstrated as well that
our models provide good results even when tested on links with end vertices that are
two hops away from each other. Such results demonstrate the ability to predict link
creation within tightly coupled social communities and shows that the obtained classi-
fiers can distinguish between friends and nonfriends, even if the two vertices have at
least one common friend (i.e., they are two hops from each other).

Our research currently considers link prediction using graph topology features only.
A possible future research direction is to analyze other types of social network features
and to examine their impact on link prediction. Examples of other types of features
are: content-based features such as posted messages, demographic features (e.g., gen-
der, age, etc.), and affiliation-related features. Additionally, in future work, we plan
to evaluate the presented link prediction methods on different link prediction scenar-
ios, such as social network evolution and a friends recommender system where friend
suggestions are based on measuring precision@k for a given user. Another future di-
rection would be to examine our algorithms in relation to different domains, such as
bioinformatics networks.

7. AVAILABILITY

Anonymous version of Academia.edu, Google+, and TheMarker Cafe social networks
topologies are available for other researchers to use on our research group Web site
http://proj.ise.bgu.ac.il/ sns/.
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